

Journal of Alloys and Compounds 227 (1995) 32-36

Structure of "TaCo₄Si₃", a new silicide closely related to the $Y_{13}Pd_{40}Sn_{31}$ stannide

M. Vilasi, G. Venturini, J. Steinmetz, B. Malaman

Laboratoire de Chimie du Solide Minéral, associé au CNRS no. 158, Université de Nancy I, B.P. 239, 54506 Vandoeuvre les Nancy cedex, France

Received 26 January 1995

Abstract

A new ternary compound "TaCo₄Si₃" has been studied using single-crystal X-ray diffraction data. The crystal structure is closely related to that of $Y_{13}Pd_{40}Sn_{31}$ with space group *P6/mmm* and *Z*=21, *a*=*b*=17.141(3) Å, *c*=7.906(2) Å, *D*_x=9.14 g cm⁻³, μ (MoK α) = 54.5 mm⁻¹, *F*(000) = 4924, *R* = 0.049 for 308 contributing unique reflections and 36 refined parameters. In the five compounds, $Y_{13}Pd_{40}Sn_{31}$, Li₁₃Ni₄₀Si₃₁, Sc_{12.7}Ni_{40.7}Ge₃₁, NbCo₄Si₃ and TaCo₄Si₃, the structures can be described as a stacking along the *c*-axis of two elemental "Zr₄Al₃" and "CaCu₅"-type blocks, but the nature and the *z*-coordinate of the atom on the 2(e) site (0 0 *z*) are not well determined. In the case of TaCo₄Si₃, these uncertainties are solved.

Keywords: Silicides

1. Introduction

Over the last few years, the oxidation behaviour of both niobium alloys and protective silicide coatings of niobium alloys has again been the subject of important research [1]. This is why we have recently reconsidered a previous study of the Nb-T-Si (when $T \equiv V$, Cr, Mn, Fe, Co, Ni) systems [2,3], and thus carried out a complete structural characterization of the ternary phase "TaCo₄Si₃". Our study has been made easier by the crystallographic data of Y₁₃Pd₄₀Sn₃₁ published by Cenzual and Parthé [4] and those of Li₁₃Ni₄₀Si₃₁ and Sc_{12.7}Ni_{40.7}Ge₃₁ recently reported by Bodak et al. [5]. The space group as well as the cell parameters of these three compounds are close to those of TaCo₄Si₃ and they suggest similar structural relationships.

Let us mention the most important structural features of $Y_{13}Pd_{40}Sn_{31}$. Its structure has been described as an intergrowth of three kinds of structural segments (Fig. 1). The first is characteristic of ternary ordering variants of the CaCu₅ type (i.e. PrNi₂Al₃ and CeCo₃B₂) [6,7]. It can be noted that the CeCo₃B₂-type structure is adopted by some ternary silicides such as RRh₃Si₂ and RRu₃Si₂ (R = RE, Y) [8]. The second unit has an atomic arrangement similar to that of YPd₂Sn with MnCu₂Al-structure type (Heusler phase) [9].The third segment is a column of Pd centred Sn prisms and Sn centred Pd prisms along [001]. Their dimensions and atomic environment are close to those found in the ZrNiAl structure [10], an ordered variant of Fe_2P . Moreover, as noticed by the authors, some doubts remain concerning the occupancies of some atomic sites where Pd and Sn atoms can be exchanged.

In order to obtain the best refinement of the structure of both $Li_{13}Ni_{40}Si_{31}$ and $Sc_{12.7}Ni_{40.7}Ge_{37}$, Bodak et al. proposed a structural variant of $Y_{13}Pd_{40}Sn_{31}$ where new atomic positions are introduced with partial occupancy (Table 1) [5]. Moreover, after careful analysis of Table 1, it appears that the atoms located along the six-fold axis (Y, Li, Ni) exhibit unusually strong temperature factor values.

2. Experimental details

Small needle-like single crystals of $TaCo_4Si_3$ and $NbCo_4Si_3$ were obtained from powder by gas transport in a sealed quartz tube under the following conditions: alloy powder composition $Ta(Nb)_{20}Co_{45}Si_{35}$; temperature of evaporation zone 1223 K; temperature of deposition zone 1313 K; transport agent I₂ (1.25 mg cm⁻³). The conditions for data collection on a NONIUS CAD 4 automatic diffractometer and structure refinement are listed in Table 2.

In a first step, taking into account inaccuracies concerning the 'isostructural' silicide and germanide, only 20 atomic sites of $Y_{13}Pd_{40}Sn_{31}$ (i.e. all except the 00z sites) were retained for a first least-squares refinement of both NbCo₄Si₃

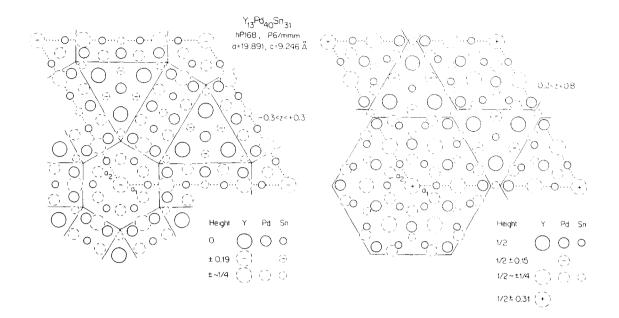
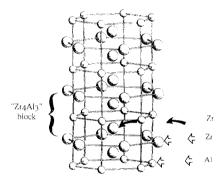
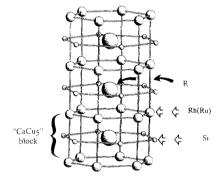




Fig. 1. [0001] projection of the structure of $Y_{13}Pd_{40}Sn_{31}$ [4]; hexagon, slab of "CaCu₅" type; rectangle, slab of "BiF₃" type (Heusler phase); triangle, columns of trigonal prisms.

Zt4Al3

RRh(Ru)3Si2 : ordered CaCu5 type

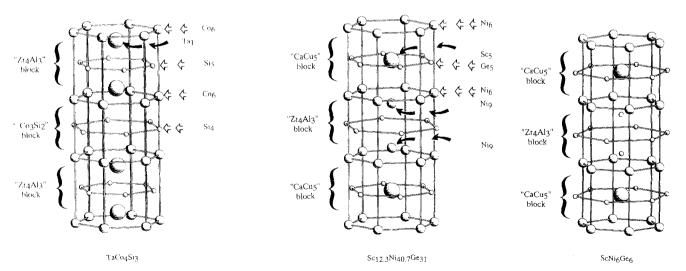


Fig. 2. Stacking of "Zr₄Al₃" and "CaCu₅" blocks along the six-fold axis in the structures of TaCo₄Si₃, Sc_{12.3}Ni_{40.7}Ge₃₁ and ScNi₆Ge₆.

Table 1

Atomic coordinates, thermal parameters and occupancy factors of $Y_{13}Pd_{40}Sn_{31}$, $Li_{13}Ni_{40}Si_{31}$, $Sc_{12.3}Ni_{40.7}Ge_{31}$ and $TaCo_4Si_{3}$; $M \equiv Y$, Li, Sc, Ta; $M' \equiv Pd$, Ni, Co; $B \equiv Sn$, Si, Ge; *t* occupancy factor

	Y ₁₃ Pd ₄₀ Sn ₃₁ [4]					Li ₁₃ Ni ₄₀ Si ₃₁ [5]					
	x	у	Z	t	U (Å ²)) x	у	z	t	B (Å ²)	
M1	0	0	0.194	1	5	0	0	0.27	1	2	
M2	0.2433	2x	0	1	2.3	0.234	2x	0	1	1	
M3	0.5761	2x	1/2	1	1.3	0.574	2x	1/2	1	1	
M4	0.2712	0	0.2895	1	1.6	0.28	0	0.314	1	1	
M5											
M′1	1/3	2/3	0	1	0.9	1/3	2/3	0.064	0.5	0.6	
M′2	0.4225	0	1/2	1	0.9	0.4204	0	1/2	1	0.6	
M'3	0.5452	2 <i>x</i>	0	1	0.8	0.5424	2x	0	1	0.6	
M′4	0.1410	2 <i>x</i>	1/2	1	0.5	0.1424	2x	1/2	1	0.6	
M′5	0.2603	2 <i>x</i>	0.348	1	0.9	0.265	2x	0.3372	1	1.1	
M′6	0.0884	2x	0.2419	1	1.4	0.0938	2x	0.2337	1	1.2	
M′7	0.0857	0.3209	0	1	0.9	0.0859	0.3157	0	1	0.7	
M′8	0.1058	0.4476	0.2211	1	0.8	0.1014	0.444	0.2254	1	0.9	
B 1	1/3	2/3	1/2	1	0.7	1/3	2/3	0.459	0.5	0.4	
B2	1/2	0	0.2584	1	0.6	1/2	0	0.266	1	0.8	
B 3	0.3862	0	0	1	0.8	0.3831	0	0	1	0.9	
B4	0.1621	0	0	1	0.9	0.1613	0	0	1	0.9	
B5	0.1459	0	1/2	1	1.0	0.1480	0	1/2	1	0.8	
B6	0.6073	2x	0.1869	1	0.4	0.6045	2x	0.174	1	0.7	
B7	0.1776	2 <i>x</i>	0.2333	1	0.6	0.1791	2x	0.2378	1	2.2	
B8	0.1264	0.4111	1/2	1	0.7	0.1335	0.4189	1/2	1	0.8	
	Sc _{12.3} Ni _{40.7} G	Se ₃₁ [5]				''TaCo₄Si₃''					
	x	у	z t	В	(Å ²)	x y		z	t	B (Å ²)	
M1						0 0	n	0.309(2)	0.78(5)	0.6(3)	

M1						0	0	0.309(2)	0.78(5)	0.6(3)
M2	0.244	2x	0	1	0.7	0.2442(2)	2x	0	1	0.3(1)
M3	0.576	2x	1/2	1	0.7	0.5770(2)	2 <i>x</i>	1/2	1	0.4(1)
M4	0.2721	0	0.2942	1	0.7	0.2711(2)	0	0.3035(4)	1	0.4(1)
M5	0	0	1/2	0.64	0.7					
M′1	1/3	2/3	0	1	0.3	1/3	2/3	0	1	0.5(2)
M'2	0.42	0	1/2	1	0.9	0.418(1)	0	1/2	1	0.3(2)
M′3	0.5434	2x	0	1	0.6	0.5436(5)	2x	0	1	0.2(2)
M′4	0.1420	2x	1/2	1	0.9	0.1403(7)	2 <i>x</i>	1/2	1	0.3(3)
M′5	0.2609	2x	0.3455	1	0.7	0.2621(4)	2 <i>x</i>	0.343(1)	1	0.6(2)
M'6	0.0883	2x	0.2389	1	1.6	0.0919(5)	2 <i>x</i>	0.232(2)	1	1.5(2)
M′7	0.0859	0.3220	0	1	0.9	0.0886(8)	0.3249(8)	0	1	0.4(2)
M'8	0.1052	0.4491	0.2236	1	0.9	0.1012(5)	0.4449(5)	0.2310(9)	1	0.5(1)
M′9	0	0	0.17	0.67	1.4				1	
B1	1/3	2/3	1/2	1	0.8	1/3	2/3	1/2	1	2.3(1)
B2	1/2	0	0.2663	1	0.6	1/3	0	0.262(4)	1	0.1(1)
B3	0.3856	0	0	1	0.8	0.387(2)	0	0	1	0.9(5)
B4	0.1656	0	0	1	0.9	0.163(3)	0	0	1	2.1(8)
B5	0.1457	0	1/2	1	0.9	0.138(2)	0	1/2	1	0.5(1)
B6	0.6063	2x	0.1841	1	0.8	0.604(1)	2x	0.186(3)	1	0.4(3)
B7	0.178	2x	0.2301	1	0.9	0.178(1)	2 <i>x</i>	0.235(4)	1	0.6(4)
B8	0.1273	0.4718	1/2	1	0.8	0.128(2)	0.408(2)	1/2	1	0.5(4)

and TaCo_4Si_3 [11]. In this hypothesis, the *R* factors were respectively R = 0.14 and R = 0.09. Then the "difference" Fourier syntheses revealed along the *c*-axis several peaks in the case of niobium silicide (000, 000.3, 000.5) and only one (000.31) in the case of tantalum silicide.

In the case of NbCo₄Si₃, it has been impossible to determine with accuracy both the nature and the position of the atom(s) along the *c*-axis, the best refinement (R=0.09) yielding unusually short interatomic distances and too high individual isotropic thermal factor values.

Table 2 " $TaCo_4Si_3$ " and "NbCo_4Si_3": summary of data collection and structure refinement

	"NbCo4Si3"	''TaCo ₄ Si ₃ ''	
Molar mass (g)	4331.4	5535	
Average crystal diameter (μm)	≈100	≈40	
Symmetry (µm)	Hexagonal	Hexagonal	
<i>a</i> (Å)	17.180(20)	17.141(3)	
<i>c</i> (Å)	7.918(7)	7.906(2)	
$V(Å^3)$	2023.9	2011.9	
Ζ	2	2	
$\rho_{\rm cal} ({\rm g}{\rm cm}^{-3})$	7.11	9.14	
Space group	P6/mmm	P6/mmm	
Radiation	Mo Kα (1500 W)	Mo Kα (1500 W)	
Monochromator	Graphite	Graphite	
Scan mode	θ, ω	θ, ω	
Take-off angle (deg)	3.5	3.5	
Recording limits (deg)	$\theta < 25$	$\theta < 25$	
Linear absorption coefficient μ (cm ⁻¹)	9.5	54.5	
Numbers of reflections			
recorded	837	958	
considered ($\sigma(I)/I < 0.3$)	283	308	
F(000)	1091	4924	
Number of parameters	36	36	
Final R value	0.090	0.049	
Microprobe analysis (at.%)	Nb14.5C049.3Si36.2	Ta _{14.5} Co _{49.30} Si _{36.2}	
Formula after refinement	**.* -9.2	Ta _{15,2} Co _{47,8} Si ₃₇	

On the contrary, in the case of TaCo₄Si₃, the occurrence of a Ta atom (M1) at the atomic coordinates 0, 0, 0.31 has led to a better *R* factor (R=0.06). A least refinement of the coordinates and the occupancy factors of the 21 atomic sites has improved the reliability factor (R=10.049), the corresponding composition being close to that derived from microprobe analysis (Ta_{14.5}Co_{49.3}Si_{36.2} at%), with a partial occupancy of the single Ta 2(e) site. The different refined parameters are listed in Table 1.

3. Discussion

The structure of the new silicide, $TaCo_4Si_3$, can be considered a variant of the $Y_{13}Pd_{40}Sn_{31}$, $Li_{13}Ni_{40}Si_{31}$ and $Sc_{12.7}Ni_{40.7}Ge_{31}$ structures. Moreover, the existence of $Ta_{13}Co_{40}Si_{31}$ "validates" in a way the structural description related in the introduction of Ref. [4]. It is particularly true for the "Fe₂P block", since TaCoSi belongs to the Co₂P-type structure which is closely related to the Fe₂P-type structure and where metallic prisms are built from four Ta atoms and two Co atoms [12]. In addition, it can be noted that in the Ti–Fe–Si system, where an isostructural phase $Ti_{13}Co_{40}Si_{31}$ has been identified [3], an equiatomic TiFeSi ternary compound crystallizes with a structure resulting from a slight orthorhombic deformation of hexagonal Fe₂P [13].

Consequently, the four structures described in detail in Table 1 are all characterized by the same framework even if two positions $(1/3 \ 2/3 \ z)$ with z close to 0 and 0.5 are only half occupied in Li₁₃Ni₄₀Si₃₁, while in the other compounds

the "equivalent" atomic sites 1/3 2/3 0(1/2) are completely filled.

This framework, of formula $M_{24}M'_{80}B_{62}$, generates hexagonal antiprism channels along the six-fold axis (M'B₆) with different, even uncertain filling. Nevertheless, in the case of the Ta phase, the uncertainty concerning both the atom type and the atomic position on the six-fold axis seem to have been removed.

One Ta atom is located in the hexagonal antiprism built from six Si atoms (B5) and six Co atoms (M'6) (Fig. 2), while Y in the $Y_{13}Pd_{40}Sn_{31}$ stannide is at the centre of the neighbouring antiprism built from six Sn atoms (B4) and six Pd atoms (M₆').

The largest atom, Ta or Y, is situated out of the hexagonal plane of Si or Sn, forming Ta–Ta (d=3.023 Å) and Y–Y (d=3.587 Å) dumbbells. Thus, this part of the structure seems more related to the Zr₄Al₃-type structure than to the CeCo₃B₂-type structure (ordered CaCu₅ type). Actually, along the six-fold axis there is alternate stacking of both "Ta₂Co₂Si₃" (Zr₄Al₃ type) and "Co₃Si₂" blocks (Fig. 2).

However, in the case of the $Sc_{12.7}Ni_{40.7}Ge_{31}$ germanide, an intergrowth of two slabs, respectively an "ScNi₃Ge" slab (ordered CaCu₅ block) and an "Ni₄Ge₃" slab (Zr₄Al₃ block), induces an atomic arrangement characteristic of the ScNi₆Ge₆ structure, which is a variant of the HfFe₆Ge₆-type structure [14]. In this structure the Ge atoms constituting the dumbbells would be exchanged with Ni atoms (Fig. 2).

The geometrical features of $TaCo_4Si_3$ and related phases described above give perhaps a rudimentary answer to the question raised by the residual electronic densities (000 and 001/2) in the NbCo₄Si₃ study. The structure of this ternary niobium silicide could result from a more complex intergrowth of both $CaCu_5$ and Zr_4Al_3 "units", inducing a superstructure, not detected by conventional X-ray studies (Weissenberg photographs) because of small contributions of the concerned atoms to the measured intensities.

Finally, in the MM'_6B_6 compounds, the existence of many structural parts resulting from an intergrowth of "HfFe₆Ge₆" and "ScFe₆Ge₆" segments supports this hypothesis [15].

Acknowledgments

We wish to thank Dr J.M. Claude and the Service Commun de microanalyse de l'Université de Nancy I as well as the Service Commun de diffractométrie automatique. This study was supported by the DRET organization under Contract 91/176.

References

 J. Steinmetz, M. Vilasi and B. Roques, J. Phys. IV, Coll. C9, Vol. 3, suppl. J. Phys. III, 12 (1993) 487.

- [2] J. Steinmetz, J.M. Albrecht and B. Malaman, C.R. Acad. Sci. Paris, Ser. C, 278 (1974) 773.
- [3] J. Steinmetz, J.M. Albrecht and B. Malaman, C.R. Acad. Sci. Paris, Ser. C, 279 (1974) 1119.
- [4] K. Cenzual and E. Parthé, Acta Crystallogr. C, 40 (1984) 1127.
- [5] O.I. Bodak, V.V. Pavlyuk, R.I. Andrusyak, B.Y. Kotur, V.K. Pecharsky and V.A. Bruskov, *Kristallografiya*, 35 (2) (1990) 312.
- [6] R.M. Rykhal, O.S. Zarechnyuk and Ya.I. Kuten, Dopov. Akad. Nauk Ukr. RSR Ser. A, (1978) 1136.
- [7] Yu.B. Kuzma, P.I. Kripyakevich and N.S. Bilonizhko, Dopov. Akad. Nauk. Ukr. RSR Ser. A, (1969) 939.
- [8] E. Parthé and B. Chabot in K.A. Gschneidner, Jr., and L. Eyring (eds.), Handbook on the Physics and Chemistry of Rare Earths, Vol. 6, North-Holland, Amsterdam, 1984, Chapter 48, p. 232.
- [9] E. Parthé and B. Chabot, in K.A. Gschneidner, Jr., and L. Eyring (eds.), *Handbook on the Physics and Chemistry of Rare Earths*, Vol. 6, North-Holland, Amsterdam, 1984, Chapter 48, p. 194.
- [10] A.E. Dwight, W.C. Harper and C.W. Kimball, J. Less-Common Met., 30 (1973) 1.
- [11] G.M. Sheldrick, SHELX Program for Crystal Structure Determination University of Cambridge, 1976.
- [12] W. Jeitschko, A.G. Jordan and P.A. Beck, *Trans. Metall. Soc. AIME*, 245 (1969) 335.
- [13] V. Johnson and W. Jeitschko, J. Solid State Chem., 4 (1972) 123.
- [14] W. von Buchholz and H.U. Schuster, Z. Anorg. Allg. Chem., 482 (1981) 40.
- [15] B. Chafik El Idrissi, G. Venturini and B. Malaman, Mater. Res. Bull., 26 (1991) 1331.